An SQP Augmented Lagrangian BFGS Algorithm for Constrained Optimization
نویسندگان
چکیده
منابع مشابه
Constrained optimization in seismic reflection tomography: an SQP augmented Lagrangian approach
Seismic reflection tomography is a method for determining a subsurface velocity model from the traveltimes of seismic waves reflecting on geological interfaces. From an optimization viewpoint, the problem consists in minimizing a nonlinear least-squares function measuring the mismatch between observed traveltimes and those calculated by ray tracing in this model. The introduction of a priori in...
متن کاملSNOPT : An SQP Algorithm for Large - Scale Constrained Optimization ∗ Philip
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available and that the constraint gradients are sparse. Second derivatives are assumed...
متن کاملAn adaptive augmented Lagrangian method for large-scale constrained optimization
We propose an augmented Lagrangian algorithm for solving large-scale constrained optimization problems. The novel feature of the algorithm is an adaptive update for the penalty parameter motivated by recently proposed techniques for exact penalty methods. This adaptive updating scheme greatly improves the overall performance of the algorithm without sacrificing the strengths of the core augment...
متن کاملSNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available and that the constraint gradients are sparse. We discuss an SQP algorithm th...
متن کاملAn augmented Lagrangian trust region method for equality constrained optimization
In this talk, we present a trust region method for solving equality constrained optimization problems, which is motivated by the famous augmented Lagrangian function. It is different from standard augmented Lagrangian methods where the augmented Lagrangian function is minimized at each iteration. This method, for fixed Lagrange multiplier and penalty parameters, tries to minimize an approximate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Optimization
سال: 1992
ISSN: 1052-6234,1095-7189
DOI: 10.1137/0802012